
1. Introduction to Functions

A function in C language is a self-contained block of code that performs a specific task.
Functions help in breaking a large program into smaller, manageable modules, making the program
easier to understand, test, and maintain.

Why Functions Are Needed

 Reduce code repetition
 Improve readability
 Make programs modular
 Simplify debugging and maintenance
 Encourage code reusability

2. Types of Functions in C

C language provides two main types of functions:

1. Library Functions
2. User-Defined Functions

2.1 Library Functions

These are predefined functions provided by C libraries.

Examples:

 printf()
 scanf()
 strlen()
 sqrt()
 pow()

They are included using header files.

Example:

#include <stdio.h>

2.2 User-Defined Functions

These are functions created by the programmer to perform specific tasks.

Example:

int add(int a, int b)
{
 return a + b;
}

3. Components of a Function

Every function in C consists of:

1. Function Declaration (Prototype)
2. Function Definition
3. Function Call

3.1 Function Declaration

Tells the compiler:

 Function name
 Return type
 Number and type of parameters

Syntax
return_type function_name(parameter_list);

Example
int add(int, int);

3.2 Function Definition

Contains the actual code to be executed.

Syntax
return_type function_name(parameter_list)
{
 statements;
 return value;
}

3.3 Function Call

Used to invoke a function.

Example
sum = add(5, 10);

4. Advantages of Using Functions

 Code reusability
 Modular programming
 Easy testing
 Reduced complexity
 Improved program structure

5. Function with Arguments and Return Value

Example
int square(int n)
{
 return n * n;
}

6. Function Without Arguments and Without Return Value

Example
void display()
{
 printf("Welcome to C Programming");
}

7. Function Without Arguments but With Return Value

Example
int getNumber()
{
 int n;
 scanf("%d", &n);
 return n;
}

8. Function With Arguments but Without Return Value

Example
void printSum(int a, int b)
{
 printf("%d", a + b);
}

9. Call by Value

In call by value, a copy of actual parameters is passed to the function.

Example
void change(int x)
{
 x = 20;
}

Value of variable remains unchanged in calling function.

10. Call by Reference

In call by reference, address of variables is passed using pointers.

Example
void change(int *x)
{
 *x = 20;
}

11. Recursive Functions

A function that calls itself is called a recursive function.

Example
int factorial(int n)
{
 if(n == 0)
 return 1;
 return n * factorial(n - 1);
}

12. Advantages and Disadvantages of Recursion

Advantages

 Simplifies complex problems
 Reduces code size

Disadvantages

 High memory usage

 Slower execution

13. Scope of Variables in Functions

13.1 Local Variables

 Declared inside function
 Accessible only within function

13.2 Global Variables

 Declared outside all functions
 Accessible throughout program

14. Storage Classes in Functions

 auto
 static
 extern
 register

15. Passing Arrays to Functions

Example
void display(int arr[], int n)
{
 int i;
 for(i = 0; i < n; i++)
 printf("%d ", arr[i]);
}

16. Returning Multiple Values Using Functions

C does not support returning multiple values directly, but it can be achieved using:

 Pointers

 Structures

17. Common Errors in Functions

 Missing function prototype
 Incorrect return type
 Mismatch in arguments
 Infinite recursion

18. Best Practices

 Use meaningful function names
 Keep functions short
 Avoid global variables
 Comment functions properly

19. Applications of Functions

 Large software development
 System programming
 Embedded systems
 Modular applications

20. Conclusion

Functions are a core concept in C programming. They make programs structured, reusable, and easy to
maintain. Understanding functions is essential for writing efficient and professional C programs.

