1. Introduction to Functions

A function in C language is a self-contained block of code that performs a specific task.
Functions help in breaking a large program into smaller, manageable modules, making the program
easier to understand, test, and maintain.

Why Functions Are Needed

e Reduce code repetition

e Improve readability

e Make programs modular

o Simplify debugging and maintenance
o Encourage code reusability

2. Types of Functions in C

C language provides two main types of functions:

1. Library Functions
2. User-Defined Functions

2.1 Library Functions
These are predefined functions provided by C libraries.

Examples:

printf()
scanf()
strlen()
sqrt()
pow()

They are included using header files.

Example:

#include <stdio.h>

2.2 User-Defined Functions

These are functions created by the programmer to perform specific tasks.



Example:

int add(int a, int b)
{

return a + b;

3. Components of a Function

Every function in C consists of:
1. Function Declaration (Prototype)

2. Function Definition
3. Function Call

3.1 Function Declaration

Tells the compiler:
e Function name
e Return type

e Number and type of parameters

Syntax

return_type function_name(parameter_list);

Example

int add(int, int);

3.2 Function Definition

Contains the actual code to be executed.

Syntax
return_type function_name(parameter_list)

{

statements;
return value;

3.3 Function Call

Used to invoke a function.

Example

sum = add(5, 10);



4. Advantages of Using Functions

Code reusability

Modular programming

Easy testing

Reduced complexity
Improved program structure

5. Function with Arguments and Return Value

Example
int square(int n)

{

return n * n;

}

6. Function Without Arguments and Without Return Value

Example
void display()
{

printf("Welcome to C Programming");

}

7. Function Without Arguments but With Return Value

Example
int getNumber()

{
int n;
scanf("%d", &n);
return n;

8. Function With Arguments but Without Return Value

Example
void printSum(int a, int b)

{

printf("%d", a + b);




9. Call by Value

In call by value, a copy of actual parameters is passed to the function.

Example
void change(int x)

{

x=20;

}

Value of variable remains unchanged in calling function.

10. Call by Reference

In call by reference, address of variables is passed using pointers.

Example

11. Recursive Functions

A function that calls itself is called a recursive function.

Example
int factorial(int n)

{
if(n ==0)
return 1;
return n * factorial(n - 1);

}

12. Advantages and Disadvantages of Recursion
Advantages

o Simplifies complex problems
e Reduces code size

Disadvantages

e High memory usage



o Slower execution

13. Scope of Variables in Functions

13.1 Local Variables

e Declared inside function
e Accessible only within function

13.2 Global Variables

e Declared outside all functions
e Accessible throughout program

14. Storage Classes in Functions

auto
static
extern
register

15. Passing Arrays to Functions

Example
void display(int arr[], int n)

{

int i;

for(i=0;1i<n;i++)
printf("%d ", arr[i]);

16. Returning Multiple Values Using Functions

C does not support returning multiple values directly, but it can be achieved using:

o Pointers



e Structures

17. Common Errors in Functions

e Missing function prototype
e Incorrect return type

e Mismatch in arguments

o Infinite recursion

18. Best Practices

e Use meaningful function names
e Keep functions short

e Avoid global variables

o Comment functions properly

19. Applications of Functions

e Large software development
e System programming

e Embedded systems

e Modular applications

20. Conclusion

Functions are a core concept in C programming. They make programs structured, reusable, and easy to
maintain. Understanding functions is essential for writing efficient and professional C programs.



